Complex dynamics of a dc glow discharge tube: Experimental modeling and stability diagrams

نویسندگان

  • Eugenio Pugliese
  • Riccardo Meucci
  • Stefano Euzzor
  • Joana G. Freire
  • Jason A. C. Gallas
چکیده

We report a detailed experimental study of the complex behavior of a dc low-pressure plasma discharge tube of the type commonly used in commercial illuminated signs, in a microfluidic chip recently proposed for visible analog computing, and other practical devices. Our experiments reveal a clear quasiperiodicity route to chaos, the two competing frequencies being the relaxation frequency and the plasma eigenfrequency. Based on an experimental volt-ampere characterization of the discharge, we propose a macroscopic model of the current flowing in the plasma. The model, governed by four autonomous ordinary differential equations, is used to compute stability diagrams for periodic oscillations of arbitrary period in the control parameter space of the discharge. Such diagrams show self-pulsations to emerge remarkably organized into intricate mosaics of stability phases with extended regions of multistability (overlap). Specific mosaics are predicted for the four dynamical variables of the discharge. Their experimental observation is an open challenge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Langmuir probe measurement of plasma parameters in a dc glow discharge

In this paper, plasma main characteristics such as electron mean temperature, electron number density, and oscillation frequency have been measured experimentally using the double Langmuir probe diagnostic system. In our experiment, the plasma was generated by applying the low pressure dc glow discharge in several common gases. The experimental results indicated the highest plasma density and o...

متن کامل

Structure formation in a DC-driven ”barrier” discharge: stability analysis and numerical solutions

A DC-driven ”barrier” discharge is a gas discharge layer and a high-Ohmic semiconductor layer sandwiched between planar electrodes to which a DC voltage is applied. The system resembles a dielectric barrier discharge, but is even simpler, as the external boundary conditions allow for a completely homogeneous and stationary state. Whole phase transition diagrams to purely oscillating states or t...

متن کامل

Dust particle charging in DC glow discharge plasma

Dust particles charging in a stratified positive column of a low-pressure DC glow discharge was investigated theoretically. The presented model consists of (i) previously developed 1D selfconsistent model for discharge parameters on the tube axis; (ii) ambipolar approximation for radial electric potential distribution and the assumption that the electron energy distribution function in radial d...

متن کامل

Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in a DC Glow Discharge Dusty Plasma

The dust acoustic wave (DAW) is a very low frequency (tens of Hz) dust density wave in which the dust particles participate in the wave dynamics. The early experimental observations of DAWs showed that the wave was self-excited by a modest relative ion drift and grew to very high amplitudes (~100%). In the first part of this paper we describe experiments showing the self-steepening of nonlinear...

متن کامل

Voltage Regulation of DC-DC Series Resonant Converter Operating in Discontinuous Conduction Mode: The Hybrid Control Approach

Dynamic modeling and control of dc-dc series resonant converter (SRC) especially when operating in discontinuous conduction mode (DCM) is still a challenge in power electronics. Due to semiconductors switching, SRC is naturally represented as a switched linear system, a class of hybrid systems. Nevertheless, the hybrid nature of the SRC is commonly neglected and it is modeled as a purely contin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015